
Logic & Logical Thinking

Paul S. Wang, Sofpower.com

May 27, 2023

Digital computers are logic machines. They use bits to store information.
A bit is nothing but a switch with two states, on and off. A bit can represent
a digit, 1 or 0. Or a bit can represent a truth value, true or false. We will
describe the close relationship between logic and computers.

Digital circuits in modern computers are built with logic gates that per-
form computations on truth values. Boolean algebra deals with computations
on truth values. Logic conditions and implications are used in software to
control program execution. These information can help us understand digital
technology and, at the same time, provide a background for logical thinking.

The ability to think and reason logically is important in general but
critical for computational thinkers. Thus, also covered here is how to improve
and sharpen our own ways for logical thinking.

Materials here can help you think logically and make you a better com-
putational thinker as well. This post is part of our Computational Thinking
(CT) blog where you can find many other interesting and useful articles.

Boolean Algebra
Logic operations are at the base of digital computers. Using a bit to represent
0 and 1 and treating 1 as true and 0 as false, all the basic logic operations AND,
OR, NOT, XOR, NAND, NOR, and XNOR can be performed by logic gates. These
operations form the foundation of all other computations in a computer, as
we can see in our other article “NAND Rules The World”.

The word algebra comes from Arabic al-jebr meaning “reunion of broken
parts”. Elementary algebra, the kind we learn in middle school, deals with
real numbers and symbols. The symbols stand for variables and unspecified
numbers. Boolean algebra, introduced by George Boole in 1854, deals with

1

https://computize.org/ctblog
https://computize.org/ctblog

truth values, true and false or 1 and 0, instead of numbers. Variables in
Boolean algebra may take on either of the two values.

Boolean algebra has the following basic operations and operators.
• Conjunction—Denoted A ∧ B, A AND B, A & B, or A • B; the value of

A AND B is true only if both A and B are true

• Disjunction—Denoted A ∨ B, A OR B, A || B, or A + B; the value of
A OR B is true if at least one of A and B is true

• Negation—Denoted ¬A, NOT A, !A, or A; the value of NOT A is true if A
is false and is false otherwise

Boolean algebra deals with expressions involving these operators, their
properties, and manipulations. As such, it is very useful in the study and
design of digital circuits.

Expressions and Laws
Here, in our introduction to Boolean algebra, we will use the values 0 and 1,
and the operators •, +, and .

Let a, b, and c be Boolean variables. The following laws hold in Boolean
algebra.

• Simplification laws: a•a = a, a+a = a, (a) = a, 0+a = a, 0•a = 0,
1 + a = 1, 1 • a = a

• Communicative laws: a • b = b • a, a+ b = b+ a

• Associative laws: a • (b • c) = (a • b) • c, a+ (b+ c) = (a+ b) + c

• Distributive laws: a•(b+c) = (a•b)+(a•c), a+(b•c) = (a+b)•(a+c)

• Absorption laws: a • (a + b) = a, a + (a • b) = a (The variable b is
absorbed as if it is not there.)

• Negation laws: a • a = 0, a+ a = 1

• De Morgan’s laws: a • b = a+ b, a+ b = a • b
The three logical operations AND, OR, and NOT are basic in that they can

be used to produce any truth table with up to 2 inputs and one output. For
example,
a XOR b = (a+ b) • (a • b)

2

Decision Making
When drawing a flowchart or specifying an algorithm, we often need to have
test conditions. Depending on the yes/no answer of a test, a procedure may
take a different path through its steps (Figure 1). In logic and in program-

Figure 1: Decision Making

ming, a function that produces a result which is either true or false is known
as a predicate. Programming languages usually provide relational operators
as predefined predicates. Table 1 lists relational operators in JavaScript that

Table 1: JavaScript Relational Operators

Operator Meaning
== Equal to
!= Not equal to
< Less than
> Greater than
<= Less than or equal to
>= Greater than or equal to

compare numerical quantities and produce a truth value.
Usually, a bit pattern with all 0s is treated as false and any other value

is treated as true. This makes sense because 0 is false and anything that is
not 0 is true. An immediate result of this convention is that any function

3

that returns a value can be treated as a predicate. Programming languages
also provide logical operators to perform Boolean operations on truth values.
Table 2 lists JavaScript logical operators. Like most other programming

Table 2: Logical Operators

Operator Meaning
&& AND
|| OR
! NOT

languages, JavaScript adopted relational and logical operators from C/C++.
As an example, let’s use the preceding notations to define a predicate

rhNormal which takes an input relative humidity reading and determines if
it is in the normal comfortable range (between 50% to 60%) for people.

Algorithm rhNormal:
Input: Integer percentage rh
Output: Returns 0 (false) or nonzero (true)

1. If (rh > 60 || rh < 50) then return 0

2. Return 1

Alternatively, we can use the following.

Algorithm rhNormal:
Input: Integer percentage rh
Output: Returns 0 (false) or nonzero (true)

1. If (rh >= 50 && rh <= 60) then return 1

2. Return 0

Automatic control often means keeping values of certain parameters within
allowable ranges. A humidity control system may call rhNormal periodically
and decide to start/stop the increasing or decreasing the humidity. Such
computer controls are commonplace. You’ll find them in automobile cruise
control systems, anti-lock brake systems, GPS navigation systems, autopilot
for airplanes, and so on.

4

Conditions and Implications
As you can imagine, when devising an algorithm, making the right decisions
on which next step to take is critical. Typically, we use

if predicate then action1 else action2

to indicate such decisions. If the predicate evaluates to true action1 is taken.
Otherwise, action2 is taken. The else part is usually optional in the notation.

Figure 2: Implication

Correctness of an algorithm depends on using the right implications Fig-
ure 2). An implication is a logical statement commonly given in these forms.

• p implies q, or p =⇒ q

• if p than q

• q if p

where p is a premise and q is a conclusion. Let’s look at an algorithm that
compares two input numbers x and y and returns one of the following

1. A positive number if x is larger than y

2. A negative number if x is smaller than y

5

3. A zero if x is equal to y

Algorithm numberCompare:
Input: Number x, number y
Output: Returns 1, 0, or -1

1. If x > y, then return 1

2. If x < y, then return -1

3. Return 0

In algorithm numberCompare, note the implications

“control flow reaching Step 2” =⇒ “x <= y”

“control flow reaching Step 3” =⇒ “x == y”

Now think about why numberCompare can be implemented simply as “return
x - y”.

Necessary vs. Sufficient Conditions
Given the implication p =⇒ q (p being true causes q to be true) then the
following statements are true.

• p is a sufficient condition for q, namely p being true guarantees that q
is true.

• q is a necessary condition for p, namely q must be true for p to be true.
Also, if q is false then p is false as well. Thus, the implication p =⇒ q
is logically the same as the implication q =⇒ p.

• If p is false, the implication says nothing about q.

• If q is true, the implication says nothing about p.

For example, the implication “If x is a woman then x is a person” certainly
does not mean “If x is a person then x is a woman”. Nonetheless, if x is not
a person then x can not be a woman.

6

Similarly, “It is a river =⇒ water flows in it” does not mean if water
flows in it then it is a river. In fact, it could be a water hose or a drain pipe.
But, if water does not flow in it then it is not a river.

And “If n is a multiple of 8 =⇒ n is an even number” does not mean if
n is even then it is divisible by 8. And “If a person is over 30 years old then
the person is an adult” does not mean an adult is over 30.

Finally, “A good computer programmer thinks logically” does not mean
that anyone who thinks logically is a good programmer. The person must
have other training as well. Yet, it is definitely the case that without logical
thinking one cannot be a good programmer. The same can be said of good
computational thinkers.

To summarize, a sufficient condition may not be necessary and a necessary
condition may not be sufficient.

However, if we have both implications p =⇒ q and q =⇒ p, then q
is a necessary and sufficient condition for p. Likewise, p is a necessary and
sufficient condition for q. Alternatively, we say p if and only if q or simply
p ⇐⇒ q. In such a case, p and q are both true or both false. For example,
a person may vote in a United States election if and only if the person is a
United States citizen, at least 18 years old, and not a convicted felon.

Don’t hesitate to study the materials over again. Make logic your own
natural mental tool and it will help immensely in whatever you do. However,
once logic is natural to you, don’t assume others are the same. In fact, it is
a good bet to assume otherwise. Your being logical certainly does not imply
that everyone else is. Because we need to work with others to achieve many
tasks, guarding against falling victim to less than logical thinking on the part
of others would be wise indeed.

Logical Thinking
Logical thinking is a cognitive process that involves reasoning and problem-
solving in a systematic and rational manner. It is the ability to analyze and
evaluate information, identify patterns, and draw logical conclusions based
on evidence and facts.

But this is easier said than done. People can easily become emotional
in many situations, including being optimistic, pessimistic, wishful, fearful,
personal, and so forth. These feelings can negatively impact objective and
evidence-based reasoning.

7

Logical thinking is an essential skill for decision-making, critical thinking,
and problem-solving in various fields such as science, engineering, mathemat-
ics, and computer science. It is a skill computational thinkers should acquire
and sharpen.

Key points and methods of logical thinking include:

Figure 3: Attention to Details

• Identifying and defining the problem or situation

• Gathering and analyzing information and data paying attention to the
5W and 1H (what, why, when, where, who, and how

• Looking at the whole picture as well as paying attention to details
(Figure 3)

• Anticipating potential problems and difficulties by asking “what if”
questions

• Identifying patterns and relationships

• Formulating hypotheses and making predictions

8

• Testing and evaluating hypotheses using evidence and facts

• Drawing conclusions and making decisions based on the results.

Cognitive Biases
A cognitive bias is a systematic error in thinking that can distort our percep-
tion, judgment, and decision-making. Such biases are mental shortcuts that
our brains use to simplify complex information and make quick decisions,
but they can also lead to errors in judgment or decision-making.

Cognitive biases can affect our perception, attitude, behavior, and reason-
ing and negatively impact logical thinking. Let’s list some common cognitive
biases:

• Herd mentality bias: Also known as the bandwagon effect, it is the
tendency to follow the crowd or majority. Of course, for any proposi-
tion, getting more votes does not prove it right or wrong.

• Confirmation bias: The tendency to seek out information that con-
firms our pre-existing beliefs and ignore information that contradicts
them.

• Availability heuristic: The tendency to rely on easily available or
memorable examples when making decisions or judgments. For exam-
ple fear of flying but not of driving.

• Anchoring bias: The tendency to rely too heavily on the first piece of
information encountered when making decisions. For example, if you
first see a bicycle that costs $1,200-–then see a second one that costs
$100–you’re prone to see the second bicycle as cheap or not well built.

• Hindsight bias: The tendency to believe that an event was pre-
dictable or easily explainable after it has occurred.

• Overconfidence bias: The tendency to overestimate our abilities,
knowledge, or accuracy of beliefs.

• Gambler’s fallacy: The belief that past events can influence the prob-
ability of future events, even when they are independent. For example,
thinking that a coin is less likely to turn up heads after it had turned
up heads five or ten times in a row.

9

• Self-serving bias: The tendency to attribute positive outcomes to
our own abilities and negative outcomes to external factors.

• Halo effect: The tendency to form a positive overall impression of
a person or thing based on one specific trait or characteristic. For
example judging a book by its cover, or a person by the car he or she
drives.

• Negativity bias: The tendency to focus more on negative information
than positive information.

• Bandwagon effect: The tendency to adopt certain beliefs or behav-
iors because many others are doing so.
These are just a few examples of the many cognitive biases that can
influence our thinking and decision-making. It’s important to be aware
of these biases and to consciously work to overcome them in order to
think more rationally and make better decisions.

Logical Fallacies
Logical fallacies are errors in reasoning or logical deduction that can lead to
incorrect or unsupported conclusions. Logical thinking involves identifying
and avoiding fallacies, which can help one arrive at more accurate and well-
supported conclusions.

Here is a list of some common logical fallacies:

• Ad hominem fallacy: Attacking the character or motives of a person
making an argument, rather than addressing the substance of the ar-
gument itself. This is the most commonly found logic mistake among
ordinary people. Meantime the reverse, “appeal to authority” is also a
common fallacy (Figure 4).

• Straw man fallacy: Misrepresenting or exaggerating someone else’s
position or argument in order to make it easier to attack. The distorted
position is known as a straw man which is set up to be easily destroyed
(Figure 5).

• False dichotomy fallacy: Presenting only two options as if they are
the only possibilities, when in fact there are more.

10

Figure 4: Ad hominem (personal attack fallacy)

• Slippery slope fallacy: Suggesting that a particular action will in-
evitably lead to a series of negative consequences, without providing
sufficient evidence to support this claim.

• Appeal to authority fallacy: Relying on the opinion of an author-
ity figure as evidence for an argument, without providing sufficient
evidence to support their claim.

• Hasty generalization fallacy: Drawing a general conclusion based
on insufficient or unrepresentative evidence.

• Post hoc fallacy: Assuming that one event caused another event
simply because it occurred before it.

• Circular reasoning fallacy: Using the conclusion of an argument as
evidence to support the premises of that same argument.

• False cause fallacy: Assuming that because two events occur to-
gether, one must have caused the other.

• Begging the question fallacy: Assuming the truth of the very thing
that one is trying to prove in the argument.

• Appeal to emotion fallacy: Relying on emotions or feelings to sup-
port an argument, rather than providing evidence or logical reasoning.

11

Figure 5: A Strawman

• Bandwagon fallacy: Suggesting that something is true or good sim-
ply because many people believe or support it.

• Ad ignorantiam fallacy: Arguing that something is true simply be-
cause it has not been proven false, or vice versa.

• False analogy fallacy: Drawing a comparison between two things
that are not truly comparable in order to make an argument.

• Red herring fallacy: Introducing irrelevant information or argu-
ments into a discussion in order to distract from the main point.

You Can Do It!
Computers are logic machines and it follows logic and instructions without
bias. We can sharpen our logical thinking by seeing the rigorous ways com-
puters and algorithms apply logic. Fact is that logical thinking is a vital skill
for success in many technical and non-technical areas, including and espe-
cially in our daily lives. It is critical for decision-making, problem-solving,
critical thinking, effective communication, and creativity. It is a fundamen-
tal skill that can benefit everyone both personally and professionally. Of
course, logical thinking is especially important for computational thinkers.

For some, acquiring logical thinking can be challenging because of over-
coming cognitive biases and avoiding logic fallacies. Here are some sugges-

12

Figure 6: Yes You Can!

tions for sharpening your logical thinking.

• Increase experience and practice: Seek out opportunities to en-
gage in logical thinking, for example joining a debate team or plan-
ning an event such as a birthday party or wedding reception. Drawing
flowcharts is a good activity. Also solving puzzles and playing strategy
games can help (Figure 7).

• Correct cognitive biases: Learn to recognize your cognitive biases
and consciously work to overcome them.

• Arrest emotional reasoning: Catch yourself when emotions inter-
fere with rational and logical thinking. By learning to recognize when
emotions are influencing one’s thinking, an individual can consciously
work to separate their emotions from their logical reasoning.

• Keep an open mind: Consider alternative perspectives and think
critically. By learning from others with different backgrounds, experi-
ences, and viewpoints, one can improve the situation.

• Think critically: Think clearly and pay attention to the logic in
reasoning. Have a hard-rto-convinc mindset toward statements or ar-
guments by others. Find logic fallacies in their reasoning so you avoid
them in yours.

13

Figure 7: The Game GO

With an understanding of logic, logical reasoning, potential cognitive biases,
and logical fallacies, you can appreciate the importance of logical thinking.
And with increasing exposure and more practice, you we can become good at
logical thinking which is fundamental for becoming a computational thinker.

14

