
Parallel Computing: Ways to Cooperate

Paul S. Wang, Sofpower.com

May 27, 2023

The history of modern computing is a story of the pursuit of speed. And
indeed the increase in processing speeds has been remarkable.

On July 16, 1969, the US launched Apollo 11 that carried astronauts
Neil Armstrong, Buzz Aldrin, and Michael Collins to the moon. Armstrong
and Aldrin became the first humans to set foot on the lunar surface on July
20, 1969. The onboard Apollo Guidance Computer (AGC) was a compact
digital computer responsible for providing guidance, navigation, and control
for the spacecraft during various mission phases, including the critical lunar
descent and ascent. The AGC had a clock speed of 1.024 MHz (megahertz),
which means it executed approximately 1 million instructions per second.

Fast forward to Mid 2023, modern personal computers, laptops, and
smartphones typically have processors with clock speeds measured in giga-
hertz (GHz), which are thousands of times faster than the AGC. Contempo-
rary CPUs can execute billions of instructions per second (GIPS). What a
difference.

As you may have guessed, keep making a single CPU smaller and faster
can’t work forevver. And you are right. We have basically reached the limit
of single CPU speeds.

So what to do to get the computer even faster? The idea is actually
simple, “use more CPUs”. It is like if a job is too much for one person, divide
up the job and get more people to help.

For a computer, more people means more independent processing elements
(PEs) in the computer hardware. A PE can be a CPU or a core. Dividing
up the job means designing our programs (apps) to have tasks to assign to
the available hardware. The approach is known as parallel computing.

The idea is simple to understand, but the devil has always been in the
details. Because making multiple anything to work together is not easy.

1



Making hardware and software to support parallel computing can be tricky
indeed.

This article will explain how that is done, including the methods, chal-
lenges, and solutions. All that knowledge is directly applicable to managing
cooperating people who work together in parallel.

Sequential Processing
The ordinary view of a program is this:

1. The program starts to run.

2. It executes a sequence of instructions one by one in the given order.

3. The program stops and finishes.

So far, we have the same view for procedures, algorithms, and flow charts.
Figure ?? shows the sequential process of pie baking.

Figure 1: Pie Baking

Classic computer hardware is similarly sequential. It runs one program
till it is done than proceed to the next program. It is a simple and straight-
forward approach. However strict sequential processing is seldom used in
practice.

Even a PC with just one CPU can appear to do things in parallel by a
technique known as time slicing—switching the CPU rapidly among processes
(running apps) giving each process a slice of CPU time so they all appear to
make progress and be responsive to user input.

Parallel Processing
A CPU in today’s PCs usually has multiple cores. High end PCs may actually
offer multiple CPUs each with multiple cores. They offer multiple PEs to

2



Figure 2: Traffic Cop in Rome

run different tasks at the same time, or in parallel. Figure ?? shows parallel
activities in real life.

A core is part of the CPU and offers independent execution capabilities
to the CPU allowing each core to run any thread belonging to any parallel
app that are being run. Figure ?? shows a quadcore CPU where the cores
are organized into two pairs sharing levels of cache memory.

Figure 3: A Quadcore CPU

To To take advantage of multiple available PEs the operating system and
application programs all need to written for that purpose. Thus, parallel
software is also important for parallel computing. A parallel program breaks
up tasks into parts to be run by the available PEs. The part of a program

3



that may run separately can be a processe (the whole app) or a thread (an
independent part of an app).

The arrangement is like managing a busy restaurant—equip it with sev-
eral kitchens (CPUs and cores) so that a number of chefs, cooks, and assis-
tants (the various independent tasks) can work simultaneously to get the job
done.

CT concept–Parallel programming is advantageous: Mul-
tiple threads can make programs not only easier to write but also
run faster and more responsively.

Challenges for Parallel Programs
To support parallel processing, the hardware, operating system, and software
programs (apps) all need to do their part. We’ll now see how apps can utilize
parallelism and the challenges thereof.

Parallel programming involves threads. By employing multiple threads
to do different required tasks in parallel, a program can be faster and more
efficient. We can think of each thread as a worker in the kitchen.

What Is a Thread?
A program under execution is called a process. A process consists of routines,
data, stack, and operating system code and structures.

Within a process, control usually follows a single execution thread, start-
ing with the first step, through a sequence of steps, and ending with the last
step. This is the single thread

To perform tasks in parallel, multiple concurrent threads of execution
(multithreading) can be used. As an independently running entity, a thread
is much easier to create than a new process. Hence, a thread is sometimes
known as a lightweight process.

Advantages of Multithreading
Single-threaded programs are good for simple calculations. Dynamic, inter-
active, or event-driven programs usually consist of multiple active parts that
naturally perform independently and interact or cooperate in some way to
achieve the intended goals. An event-driven program basically performs tasks

4



in reaction to external events such as user input or signals from other pro-
cesses or threads. For example, consider satellite based navigation systems

Figure 4: Satellite Navigation in Car

(Figure ??). Separate threads can take care of user control, map render-
ing/update, satellite signal tracking and location determination, and so on.

As another example, a video game program has independent parts for user
controls, graphical rendering, motion generation, score keeping, etc. A single-
threaded video game would be enormously complicated, if not impossible. A
multithreaded program can model each of these parts with a different thread.
Also, a Web browser is a natural candidate for multithreading. Figure ??
shows parallel processing in a chocolate assembly line.

Figure 5: A Chocolate Assembly Line

5



Furthermore, graphical rendering and user control processing take place
simultaneously. Responsive handling of such concurrency is difficult in a
single-threaded program.

Challenges of Multithreading
Basically, a multithreaded program has to coordinate several independent
activities and avoid the possibility of them tripping over one another. Mul-
tithreaded programs involve four important new aspects not present in ordi-
nary single-threaded programs: mutual exclusion, synchronization, schedul-
ing, and deadlock. A good understanding of these concepts will help you
better handle real-world activities and better manage cooperation with oth-
ers.

Mutual Exclusion
Threads running in parallel usually need to cooperate to achieve intended
tasks. Cooperation typically involves different threads accessing the same
program constructs. When multiple threads share a common resource, a

Figure 6: Mutex

piece of data or a file, for example, simultaneous access by more than one
thread can take place. Such simultaneous accesses is called a race condition
and there is no telling which thread may win the race and the outcome of
the entire program can be unpredictable or erroneous. For example, if two
threads increase the same counter by one at the same time, the resulting

6



count can be wrong. To avoid simultaneous access, it is necessary to arrange
mutually exclusive access to shared quantities. When programmed correctly,
only one thread at a time can access the same quantity protected by mutual
exclusion (mutex).

Consider writers cooperating on an magazine article. If two writers work
on the same article from different workstations concurrently, disaster strikes.
Mutual exclusion in this case can be arranged by insisting that every writer
lock the article before working on it. No one else can obtain access to the
article until it is unlocked.

Mutual exclusion is actually commonplace. Think about passengers on
an airliner. Every passenger must lock the restroom door after entering it
and unlock it to exit. Other passengers must wait until the door is unlocked
before entering. That is simply politeness. In parallel computing, we call it
mutual exclusion (Figure ??).

Synchronization
Mutual exclusion avoids threads tripping over one another. But you still
need a way for threads to communicate and coordinate their actions in or-
der to cooperate. Threads make progress at independent and unpredictable
rates. Thus, it is necessary to coordinate the order in which some tasks are
performed.

If a task must not be started before some other tasks are finished, it is
important to make sure that is the case. For example, imagine each thread is
a worker in an assembly line . Then a thread must wait until another thread
has finished a part it needs. Such time-related coordination of concurrent
activities is called synchronization. For example, we all obviously know that
synchronization is critical for symphony orchestras (Figure ??).

Consider workers in a kitchen making bread. One is working on preparing
the dough, another will take the dough that is ready to start the baking it.
The baking worker must wait until the dough preparation has been done.

Thread synchronization usually involves delaying a thread until certain
conditions are met or certain computations by other threads are done.

A thread is said to be blocked if its continued execution is delayed until a
later time.

7



Figure 7: Synchronization

Thread Scheduling
When a process involves multiple threads, the available CPU and/or cores
execute all threads in rapid succession. Exactly which currently executing
thread is stopped and which waiting thread is run next Figure ??) depend
on the scheduling policy of the thread system and the priority settings of the
threads involved.

Figure 8: Ready And Waiting

Deadlock
In a situation where multiple threads are interdependent in many ways, with
resources shared under mutual exclusion and subtasks under synchroniza-

8



tion, there is the possibility of deadlock. Figure ?? shows a traffic deadlock
situation. Deadlock happens when threads are waiting for events that will

Figure 9: Deadlock

never happen. For example, thread A is waiting for data from thread B before
producing output for B. B is waiting to receive some output from A before it
can produce data for A. In real life, two friends wanted to talk but neither
are willing to call first, a deadlock situation indeed. Of course, in parallel
computing as well as in real life, we must avoid such problems.

CT concept–Cooperating parallel programs need coor-
dination: Otherwise they can run into problems and won’t work
well or at all.

Finally
In parallel processing, we make use of multiple CPUs/cores and write multi-
threading programs for operating systems as well as important apps such as
Web browsers. This way we can increase execution speed and perform tasks
more quickly and effectively.

Parallel computing is an important area and we have only scratched the
surface of that topic. Even then, we can see the links between parallel pro-
cessing and everyday activities and understand, as computational thinkers
should, that cooperation is a very good thing for doing big and complicated
jobs by getting help from many. Yet, at the same time organizing a large
cooperation we must deal with challenges such as mutual exclusion, synchro-
nization, scheduling and deadlock.

Such understanding have lots of application in daily living and working.

9


