Problem Solving:

Paradigms € Applications

Paul S. Wang, Sofpower.com
May 20, 2023

One of the main purposes of computational thinking (CT) is to better
solve problems. Some would even say CT is basically a problem-solving
methodology.

Having seen many interesting applications of CT for problem solving in
earlier articles, we are now ready to look at “problem solving” itself in general.

Figure 1: Thinking about Problem Solving

This post is part of our Computational Thinking (CT) blog where you
can find many other interesting and useful articles.


https://computize.org/ctblog

Problem Solving Paradigms

We shall briefly explain some important general problem solving paradigms,
methods, and approaches and give examples.

e Decomposition or Divide and Conquer: This involves breaking
down a large or complex problem into smaller, more manageable parts
or sub-problems. This approach allows you to focus on one part of the
problem at a time and solve it before moving on to the next.

Example: To create a website, you can decompose the task into smaller
tasks such as designing the layout, writing the HTML code, adding CSS
styling, creating interactive features, and running user tests.

o Abstraction: This involves identifying the essential features of a prob-
lem and ignoring the irrelevant details (Figure P). Abstraction allows
you to simplify a problem and focus on its core components.

Figure 2: Abstract Heart Gesture

Example: To create a game, you can abstract away the complexities of
the physics engine and focus on the game mechanics and gameplay.

o Algorithmic Thinking: This involves developing step-by-step proce-
dures or algorithms for solving problems. Algorithms provide a clear
and unambiguous set of instructions that can be followed to solve a
problem.



Example: To find the shortest path between two points on a map,
you can use Dijkstra’s algorithm which involves assigning a tentative
distance to each node and updating the distance as you move along the
graph.

Pattern Recognition: This involves identifying patterns (Figure a)
or trends in data that can be used to make predictions or solve prob-
lems. Pattern recognition allows you to identify similarities and differ-
ences between different data sets.

Figure 3: Big Dipper in the Night Sky

Example: To identify fraudulent credit card transactions, you can use
pattern recognition to identify common characteristics of fraudulent
transactions such as unusual purchase amounts or locations.

Logical Reasoning: This involves using deductive reasoning to an-
alyze and solve problems. Logical reasoning involves identifying the
premises of an argument and drawing conclusions based on those premises.

Example: To solve a Sudoku puzzle, you can use logical reasoning to
eliminate numbers from each cell based on the numbers already present
in the same row, column, and 3x3 box.

Top-Down Design: This approach involves starting with a broad
view of a problem and then breaking it down into smaller, more specific
sub-problems. It allows you to focus on the high-level structure of a
problem before diving into the details.



Example: To plan a dinner party, you might start with the number
of guests, the food (dishes and drinks), any dietary considerations of
individual guests, and the order of presentation of the courses, and so
on.

Bottom-Up Design: This approach involves starting with specific
details and building them up into a larger goal. It is useful when
dealing with problems where the details are well-defined but the overall
structure is flexible.

Example: Again consider the dinner party. We can start with the
needed ingredients, cleaning them, preparing each ingredient to be
ready for cooking, then cook each required dishes in a given order.
Finally the whole dinner is served as planned.

Recursion: This involves solving a problem by breaking it down
into smaller, similar sub-problems that can be solved using the same
method. It is useful for solving problems that have a recursive struc-
ture. We talked about recursion in part one. Here is a mirror image
version of recursion (Figure H).

Figure 4: Infinity Mirror Demonstrating Recursion

Example: To calculate the factorial of a number, you can use a recursive
function that repeatedly multiplies the number by itself minus one until
the base case of 1 is reached.

Iteration: This involves repeating a set of steps or a process multi-
ple times until a desired outcome is achieved. It is useful for refining
solutions and improving their quality.



Example: To develop a machine learning model, you might iterate
through several rounds of training and testing to gradually improve its
accuracy and performance.

Heuristics: This involves using rules of thumb or educated guesses to
solve a problem when an optimal, systematic, or algorithmic solution
is too slow, too hard, or not feasible. It is useful when dealing with
complex problems where finding an optimal solution is computationally
infeasible.

Example: Consider security checking at crowded public places such
as train stations or airports. Profiling-looking for suspicious actions
or behaviors in the crowd—is often effective. Other heuristics include
common sense, stereotyping, educated guess, and even intuition.

Backtracking: This involves systematically exploring all possible so-
lutions to a problem by trying one option after another and backtrack-
ing when a dead-end is reached. It is useful for solving problems with
a large search space.

Example: For maze (Figure H) escapting, you can use backtracking to
explore all possible paths until the correct path is found.

Figure 5: Part of A Garden Maze

Trial and Error: This involves trying out different solutions until a
desired outcome is achieved. It is useful when dealing with problems
where the solution is not immediately clear.

Example: To solve a crossword puzzle, you can use trial and error to
try out different word combinations until the correct solution is found.



e Incremental Improvements: This involves making small changes to
a solution to gradually improve its performance or quality. It is useful
when dealing with problems where the solution can be refined through
small changes.

Example: To improve a software program, you can use incremental im-
provements to add new features, fix bugs, and optimize its performance
over time, resulting in version 2.0.

o Parallelization: This involves breaking a problem down into smaller
sub-problems and solving each sub-problem simultaneously on multiple
processors (Figure E) or cores. It is useful for solving problems that
are computationally intensive and can be broken down into smaller,
independent tasks.

Figure 6: Working in Sync

Example: To look for someone or something in an area, we can divide
the area into a grid and employ multiple searchers ssimultaneously,
each responsible for a subarea.

o Optimization: This involves finding better or even the best possible
solution to a problem within a given set of constraints. It is useful for
solving problems where there are many possible solutions, but only a
few of them are optimal.

Example: To optimize the production schedule for a factory, you can
use mathematical optimization techniques such as linear programming
to find the schedule that maximizes production while satisfying con-
straints such as labor availability and machine capacity.



e Modularity: This involves breaking a system down into smaller, in-
dependent modules or components that can be developed and tested
separately. It is useful for solving problems that are too large or com-
plex to be solved as a whole.

Example: To run a restaurant, you can divide up the operations into
reservations, hosting, table service, kitchen, bar service, and so on.

o Structuring Data: Solution methods can become easier, faster, and
more efficient if the data involved in the problem or solution process
are organized to have certain structures that the solution method can
utilize to advantage.

Example: A dictionary of words is an obvious example. Records kept
by time and date, airline flights by departure and destination cities,
addresses by city, state, and zipcode, files and folders in a hierarchical
(tree) structure are additinal examples.

Of course there are many other CT paradigms, methods, and approaches
used in problem solving. By using a combination of these techniques, you
can solve complex problems in a structured and effective manner.

In fact, the more familiar you are with computational and digital tech-
nologies the better you can solve all kinds of problems.

Applications in Daily Living

Let’s see how useful the CT problem solving paradigms are in our daily lives.

o Planning a trip: When planning a trip (Figure H), you can use de-
composition to break down the trip into smaller tasks such as booking
flights, reserving accommodations, and planning activities. You can
also use heuristics to find the best time to book flights and accom-
modations based on historical pricing data, and trial and error to find
the best deals. Additionally, you can use optimization to find the best
itinerary that maximizes your time and minimizes your expenses.

o Solving household problems: When facing household problems,
such as a leaky faucet or a malfunctioning appliance, you can use de-
composition to break down the problem into smaller components and



Figure 7: Trip Planning

identify the root cause. You can also use trial and error to try out
different solutions until you find one that works, and incremental im-
provements to optimize the solution over time.

Managing personal finances: When managing your personal fi-
nances, you can use data abstraction to simplify your budget and iden-
tify areas where you can cut expenses. You can also use optimization
to find the best investment strategies that maximize your returns while
minimizing your risks.

Choosing a career: When choosing a career, you can use top-down
design to identify your career goals and then break them down into
smaller steps such as researching job opportunities and acquiring rele-
vant skills. You can also use data abstraction to simplify the job market
and identify the most promising career paths, and heuristics to identify
industries and job roles that match your interests and skills.

Learning a new skill: When learning a new skill, you can use bottom-
up design to start with the basics and gradually build up your knowl-
edge and expertise. You can also use iteration to practice your skills
and refine your technique over time, and feedback loops to identify
areas where you need to improve.

Making decisions: When making decisions, you can use logical rea-
soning to analyze the pros and cons of different options, and heuristics
to identify biases and errors in your decision-making process. You can



also use backtracking to explore different options and find the best so-
lution, and trial and error to test different strategies until you find the
one that works best for you.

Handling Crises

It is true that no one can be lucky all the time. When something bad happens,
such as a loved one had an accident or your kitchen caught on fire, how do
you avoid panic so you don’t get into more trouble yourself. There is a reason
why people say “bad things come in pairs.” This is indeed a problem worth
solving ahead of time.

Let’s see how CT problem solving techniques can help us through a crisis.
Here are some tips for dealing with emergencies:

1. Stay calm: In an emergency situation, it’s natural to feel panicked or
overwhelmed. However, it’s important to try to stay calm and focused
in order to make effective decisions and take correct actions (Figure §).

Figure 8: Stay Calm Can Save Lives

2. Call for help: If the situation requires immediate medical attention,
call emergency services or seek help from a nearby hospital or clinic.
If the situation involves a safety threat, call the police or other appro-
priate authorities.



3. Take immediate action: If there is a specific action that you can
take to address the situation, take it as soon as possible. For example,
if someone is choking, perform the Heimlich maneuver immediately.

4. Follow emergency protocols: If you are in a workplace or public
setting, follow the emergency protocols that are in place. These proto-
cols may include evacuation procedures, emergency contacts, and other
important information.

5. Communicate with others: If there are others involved in the sit-
uation, communicate with them clearly and calmly. Try to provide
reassurance and guidance as needed.

6. Seek support: After the immediate crisis has passed, seek support
from friends, family members, or professionals if needed. It’s important
to take care of yourself and seek help if you are struggling with the
emotional impact of the situation.

Normally, it’s important to be prepared and take a structured approach
to problem-solving. But, the priority in an emergency is to take immediate
action to deal with the urgent present problems. By staying calm, taking
action, and seeking help as needed, you can help to minimize the impact of
the emergency and protect yourself and others.

In the End

In our three articles on CT problem solving, we have discussed many topics
and hopefully gained a much better understanding and become better at
solving problems of many kinds.

However, in addition to the paradigms, methods, and approaches dis-
cussed earlier, here are a few more important aspects of computational think-
ing for problem-solving—creativity, collaboration, Continuous improvement
adapting to change, and ethical considerations.

Computational thinkers, by incorporating these aspects into your problem-
solving approach, you can develop more effective solutions and make a posi-
tive impact on the world around you.

10



